Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation
نویسندگان
چکیده
Equal-arm interferometric detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set overall performance. If, however, the two arms have different lengths ~as will necessarily be the case with space-borne interferometers!, the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In this paper we present a method for exactly canceling the laser noise in a one-bounce unequal-arm Michelson interferometer. The method requires separate measurements of the phase difference in each arm, made by interfering the returning laser light in each arm with the outgoing light. Let these two time series of phase difference be zi , i51,2. By forming the quantity @z1(t22L2 /c)2z1(t)#2@z2(t22L1 /c) 2z2(t)# , where Li are the arm lengths, gravitational wave signals remain while the laser noise is canceled. Unlike other proposed methods, this procedure accurately cancels the laser noise if the arm lengths are known. This method is direct in time and allows for time-varying arm-lengths. In this paper we demonstrate that this method precisely cancels the laser noise, present the transfer function of gravitational waves after forming this linear combination, and discuss system requirements ~such as required knowledge of the arm lengths!. We verify the technique with numerical simulation of periodic gravitational wave signals embedded in laser and shot noise having spectra expected for a space-borne interferometer, and compare our time-domain approach with approximate correction methods based on Fourier transforms of the zi processes. @S0556-2821~99!00710-9#
منابع مشابه
Unequal arm space-borne gravitational wave detectors
Abstract Unlike ground-based interferometric gravitational wave detectors, large space-based systems will not be rigid structures. When the end-stations of the laser interferometer are freely flying spacecraft, the armlengths will change due to variations in the spacecraft positions along their orbital trajectories, so the precise equality of the arms that is required in a laboratory interferom...
متن کاملArm cavity resonant sideband control for laser interferometric gravitational wave detectors.
We present a new optical control scheme for a laser interferometric gravitational wave detector that has a high degree of tolerance to interferometer spatial distortions and noise on the input light. The scheme involves resonating the rf sidebands in an interferometer arm cavity.
متن کاملMirror-orientation noise in a Fabry-Perot interferometer gravitational wave detector.
The influence of angular mirror-orientation errors on the length of a Fabry-Perot resonator is analyzed geometrically. Under conditions in which dominant errors are static or vary slowly over time, the analysis permits a simple prediction of the spectrum of short-term cavity length fluctuations resulting from mirror-orientation noise. The resulting model is applicable to the design of mirror co...
متن کاملAnalysis of light noise sources in a recycled Michelson interferometer with Fabry-Perot arms.
We present a method by which the effect of laser field variations on the signal output of an interferometric gravitational wave detector is rigorously determined. Using the Laser Interferometer Gravitational Wave Observatory (LIGO) optical configuration of a power recycled Michelson interferometer with Fabry-Perot arm cavities as an example, we calculate the excess noise after the input filter ...
متن کاملTime-Delay Interferometry
Equal-arm interferometric detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower lev...
متن کامل